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These notes summarize concepts introduced in Nti (1999), Fang (2002), Nti (2004),
Epstein et al. (2013), and Ewerhart (2017b) about revenue maximization in Tullock
lottery contests.

Introduction

Contests are models of conflict where risk neutral players exert costly effort to win a
prize. A lottery contest is any contest where there is not a deterministic relationship
between effort and victory. For example, scores could be measured incorrectly or
there could be some randomness in the relationship between effort and the final
scores. Alternatively, you can interpret lottery contests as giving each player a slice
of a prize. For example, a 5% probability of receiving the prize is the same as receiving
5% of the prize with certainty.

The most popular lottery contest is the Tullock contest.1 We discuss ways to
increase competitiveness in Tullock contests by discriminating against the stronger
player. Handicaps in sporting events are a real world example of such discrimination.
The purpose of a handicap is to make a match more even so that both teams/players
exert more effort.

1Tullock contests were introduced 1980 by Gordon Tullock. The other major lottery contest is
the rank order contest (Lazear and Rosen, 1981).
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Model

Suppose that the prize of contest is worth one to both players. So, the two players
have the same value. However, their scores have different costs. In particular, we will
say that the score is k > 1 times more costly for Player 2 than for Player 1.2 You can
interpret this as saying that Player 1 is more skilled. So, it takes less effort for her to
produce a high score.

The probability of Player 1 winning the prize in a Tullock contest when she chooses
score s1 and her opponent chooses score s2 is:

p1(s1, s2) = sr1
sr1 + (δs2)r .

The parameter δ sets the level (and direction) of direct discrimination. If δ = 0,
then Player 1 always wins. If δ = ∞, then Player 2 always wins. In general, δ > 1
implies discrimination against Player 1. Note that the prize is symmetric when δ = 1.
In this case, there is no direct discrimination.

The other parameter, r, is more subtle. It affects the variance of the lottery in
the contest. If r → ∞, the prize always goes to the player with the higher score.3

If r = 0, the prize is allocated at random. This precision parameter changes the
marginal returns to effort at different levels. For example, if r < 1, then the lower
effort player gets a disproportionately high return. While such a contest is fair, in
the sense that the two players are not treated differently, it is actually rigged in favor
of the weaker player.

The final payoffs are:

U1(s1, s2) = sr1
sr1 + (δs2)r − s1 U2(s1, s2) = (δs2)r

sr1 + (δs2)r − ks2

Assumptions

We consider pairs r, δ such that the following two conditions are satisfied.

1. No reversal: δ ≤ k

2The papers mentioned give different prize values instead of different costs. The two are equiv-
alent. I prefer to say that one player is more skilled than to say that one player values the prize
more.

3In this case, it is not a lottery contest. It converges to the all-pay auction – the main deter-
ministic contest.
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2. Pure strategy equilibrium:
(
δ
k

)r
≥ r − 1

The first assumption prevents excessive discrimination against Player 1 and is
without loss of optimality. This is made for simplicity. Without it, we would have to
consider more cases.

The second assumption is more important. It is a necessary and sufficient condi-
tion for there to be an equilibrium in pure strategies. It is always satisfied if r ≤ 1
and is never satisfied if r > 2. The condition is equivalent to

r ≤ r̄(δ/k) = 1− W (−(δ/k) log (δ/k))
log (δ/k)

where W is the Lambert W function. The upper bound, r̄ is a strictly increasing
function.

Figure 1: Values of r such that a pure strategy equilibrium exists for each level of δ
k
.

Equilibrium

To find the Nash equilibrium, we need to find the best response functions for each
of the players. We do this by maximizing each payoff function. Player 1’s first order
condition is
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rsr1(δs2)r

s1 (sr1 + (δs2)r)2 = 1

and Player 2’s first order condition is

rsr1(δs2)r

s2 (sr1 + (δs2)r)2 = k.

This is a system of two equations with two unknowns. Dividing the second by the
first gives us k = s?

1
s?

2
. So the ratio of the scores does not depend on the discrimination

parameters. Thus, any change that increases one also increases the other. With this,
we can quickly solve the system of equations to get s?1 = r(kδ)r

(kr+δr)2 and s?2 = r(kδ)r

k(kr+δr)2 .
In order for the first order approach to be valid, we have to check the second order

and boundary conditions.
The second order conditions require the second derivative of the payoffs to

be negative at the equilibrium. They are satisfied if and only if
(
k
δ

)r
> r−1

r+1 . This
inequality holds by Assumption 1.

The boundary conditions require that payoffs are non-negative at the proposed
equilibrium. Otherwise, the player would prefer to chose a score of zero. Using k = s?

1
s?

2
,

we can dramatically simplify the equilibrium payoffs:

U1(s?1, s?2) = kr

kr + δr
− s?1 U2(s?1, s?2) = δr

kr + δr
− s?1.

By Assumption 1, U2(s?1, s?2) ≤ U1(s?1, s?2). So, we only need a condition such that
Player 2 has a positive payoff. Substituting s?1 = r(kδ)r

(kr+δr)2 gives our lowest payoff

U2(s?1, s?2) = δr

kr + δr
− r(kδ)r

(kr + δr)2 .

It’s not obvious that this is non-negative by Assumption 2. However, it just
requires some factoring.

Contest design

Suppose that there is some contest designer who can choose r and/or δ in order to
maximize the revenue, s1 + s2. Because we know that k = s1

s2
, we are actually trying

to maximize (1 + k−1)s1. Because k is constant, maximizing s1 is enough.
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Direct discrimination

Suppose r is fixed. For now, assume it is one. To maximize revenue, we need to
maximize s1. Suppose that we can directly discriminate using δ. Then, our problem
is

max
δ

kδ

(k + δ)2 .

This maximum is obtained at δ? = k.

Figure 2: Function we maximize when discriminating directly.

In this case, the revenue is

s1 + s2 =
(

1 + 1
k

)
s1 =

(
1 + 1

k

)
k2

(2k)2 = 1 + k

4k
If we allow r to take any positive value, then the optimal delta will still be δ? = k.

This result comes from the optimization problem

max
δ

r(kδ)r

(kr + δr)2

which has the following first order condition:

r2(δk)r(kr − δr)
δ(kr + δr)3 = 0.
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Covert discrimination

Suppose that the contest designer cannot discriminate directly. So δ = 1, and the
designer chooses r in order to maximize the revenue of the contest. Then, our problem
is

max
r

rkr

(1 + kr)2 .

If we take first order conditions and solve, we get

r = 1
log(k)

(
1− 2

1 + kr

)−1

which defines implicit function r?(k). However, these values cannot be attained
unless k is sufficiently large. Recall that there is no pure strategy equilibrium if r > r̄.
So, there is no way to reach some of these values.

Figure 3: The optimal choice of r (blue) plotted against the constraint for an equi-
librium in pure strategies (orange). The constrained optimum is the minimum of the
two curves.

If you set up a Lagrangian as in Proposition 3 of Nti (2004), then you find that
the constrained optimum is the minimum of the two pictured curves. No exact rep-
resentation of the intersection is known. However, it is approximately k = 3.509.
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Overall optimum

We know that if both forms of discrimination are allowed, then δ? = k because this
is the optimum for any r. As you can see in the first plot, this means that r̄ = 2. We
will show that this is also the constrained optimum. Our optimization problem is

max
r≤2

r

4
which is obviously attained at r = 2.

r, δ Payoffs Revenue

No discrimination 1, 1 k2

(1+k)2 ,
1

(1+k)2
1

k+1

Direct (r fixed) r, k 2−r
4 , 2−r

4
1+k
4k

Covert (δ = 1) r(k), 1

Unrestricted 2, k 0, 0 1+k
2k

Table 1: Table of theoretical results.

Beyond pure strategies

Assumption 2, which guarantees that equilibria exist in pure strategies is without loss
of optimality. So, the solutions in the previous sections hold for all r ≥ 1.

If payoffs are symmetric, Assumption 2 is violated if and only if r > 2. In this case,
Baye et al. (1994) shows that when there is a symmetric mixed strategy equilibrium
in which both players receive a payoff of zero.4 This means that when δ = k,

E[s1] = E

[
sr1

sr1 + (ks2)r

]

kE[s2] = E

[
(ks2)r

sr1 + (ks2)r

]

Symmetry implies that that each player’s expected probability of winning is one
half. Therefore, E[s1] = 1

2 , E[s2] = 1
2k , and E[s1 + s2] = 1+k

2k . This is the same
4The symmetric equilibrium is characterized in Ewerhart (2015).
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maximum revenue as in the overall optimum in pure strategies. It’s not obvious that
this is the maximum revenue. For example, one might imagine that the principal
could ensure zero payoffs but have Player 1 win with probability greater than one
half. In order to confirm that Assumption 2 is without loss of optimality, we need to
answer a few questions.

Are equilibria revenue equivalent? Yes. Ewerhart (2017b) shows that the equi-
librium is unique when r ≤ 2 and Ewerhart (2017a) shows that equilibria are revenue
and payoff equivalent when r > 2.

Is r ∈ (r̄(δ/k), 2] ever optimal? No. Wang (2010) shows that revenue is

2δ
rk

(
1 + k

2k

)
(r − 1)(r−1)/r

on this interval which is weakly decreasing in r. Therefore, r = r̄(δ/k) yields
weakly greater revenue.

Is r > 2 ever optimal? No. Alcalde and Dahm (2010) show that if r > 2, the
Tullock contest is revenue and payoff equivalent to an all-pay auction. Revenue in
this auction is

(
δ
k

)
1+k
2k . This is the same revenue as when r = 2.

Is δ < k ever optimal? No. Note that the revenue in the last two points is
increasing in δ.

Conclusion

Table 1 summarizes the results that we have about each type of optimal contest.
There is not much to summarize for covert discrimination because there aren’t any
closed form expressions.

The case of covert discrimination demonstrates an important precision tradeoff.
Choosing a large value of r increases competitiveness by awarding the prize more
frequently to the player with the higher score. However, choosing a low value allows
you to discriminate against the stronger player – which also increases competitiveness.
The effect that wins out depends on the size of the asymmetry between players.
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Figure 4: The above shows an example of how revenue depends on r. Note that the
maximum is reached before r̄(δ/k) when the players are very heterogeneous (orange)
and at the upper bound when players are more homogeneous (blue).

When k is large enough, this discrimination effect wins out. However, when direct
discrimination is possible, there is no advantage to covert discrimination.
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