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These notes are about nonlinear war of attrition models with two players. The
formulation we consider is a simplified version of Hendricks et al. 1988. These mod-
els are popular for modeling conflict that occurs in continuous time including wars,

filibusters, bribes, and competition for standards and monopolies.

Basics

The war of attrition is a second price all-pay auction. That is, an auction where
players pay a function of the second highest bid. The story is that two players enter
into a battle royal to win some reward. Each moment that they fight, they must pay
some cost. Fach player chooses a secret time when they will exit the fight and forfeit
the prize.

Because the last player wins as soon his opponent exits, the winner only fights
until her opponent’s exit time. So, both players only face the cost of the lower exit

time.

Model

There are two players, Player 1 and Player 2. Suppose player 7 exits at ¢; and the
other player exits at t_;. Then, the payoff of player i is defined by:

Ui(tist—i) = 9si(t;)  ifti=t_;
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where /; is the payoff of losing, s; is the payoff of a tie, and f; is the payoff of the
winner. Note that the two players can have entirely different payoffs. In the most
common formulation, ¢;(t) = —t and f;(t) =V; —t.

We make one regularity assumption and another assumption which characterizes

the war of attrition.

Assumption 1: The function f;(t) is continuous and ¢;(¢) is continuously differen-
tiable.

Assumption 2: Players like to win and war is costly. Specifically,
1. Winning is better than losing: f;(t) > (;(t) for all t.
2. Winning is better than tieing: f;(t) > s;(t) for all t.

3. War is costly when losing: (;(t) < 0.

4. Costs are relevant: [5° %dz = 00.

Without loss of generality, we will say that ¢;(0) = 0. The second assumption
guarantees that ties occur with probability zero in equilibrium. So, I will not mention
them again. The last two points of Assumption 2 (4 and 5) prevent pathological
behavior around infinity. Without these assumptions, it is possible that the players
would never exit. In particular, 5 guarantees that the benefit of winning is not so

large relative to the cost of the war.

Pure strategy Equilibria

If limy o fi(t) < £;(0), there are asymmetric pure strategy Nash equilibria where one
player, 4, chooses a very large exit time ¢ such that w_;(t) < 0. The other player best
responds by playing zero because fighting enough to win is not worthwhile. Because
the winner’s payoff does not depend on her own score, she is indifferent between all

actions except zero. So, this is a Nash equilibrium.



Mixed strategy equilibria

In addition to the pure strategy equilibria, there is one Nash equilibrium in mixed
strategies. The equilibrium will have full support over the real line. This is established
in several steps.

1. If one player has a gap in their support, their opponent must have the same
gap. Otherwise, the opponent would move density from the gap to just before it.
2. There are no gaps in either support. Otherwise, each player could do better by
moving mass from the end of the gap to the beginning. 3. There are no atoms except
at zero. Otherwise, the opponent would move mass from slightly below the atom to
slightly above the atom. This would create a gap. 4. At most one player has an atom
at zero. Otherwise, one player would prefer to move their atom slightly up.

We will see from the construction of the equilibrium that no player can have an
atom and that the support cannot be bounded. However, these four points are enough
to get us started.

In order for the player to be willing to mix, they must be indifferent between all

points on the support. So, the following indifference condition applies:

where u; is the player’s (constant) payoff. This is the same as

[Tﬁﬁdexm)+(1—(?i@»&@):zu

where GG_; is the equilibrium strategy distribution of the opponent. We want to

solve for G_;. If we take derivatives of both sides with respect to ¢, we get

fi@)g-i(x) + (1 = G_i(1)6i(t) — g-i(t)6i(t) = 0

which simplifies to the following differential equation

g-i(t)
=G0

This equation ensures that the marginal cost of participating in the war of attrition

—li(t) = (filt) = 4i(t))

is equal to the prize value times the rate that your opponent exits (hazard rate). So,

we are equating marginal cost with marginal benefit.



The differential equation has a known solution:

Gi(t) = 1 — exp (/Ot dez> |

One might be concerned that the above expression may not satisfy the properties
of a distribution function. For example, it may be decreasing or lim; ,,, G_;(t) # 1.
This is not the case. The function is strictly increasing because the term inside the
integral is negative. Assumption 2.5 guarantees that the distribution approaches one.
However, it never reaches one at any time. So, the support is unbounded. Another

way to see this is to note that the survival function is

S_i(t) = exp (/Ot mdz> > 0.

The solution is somewhat difficult to work with. So, in most applications, the

prize is taken to be fixed.

Assuming fixed prizes

If we assume f;(z) = V; + 4;(y), where V; is a constant prize, then
So, the strategy reduces to

t
G_i(t)=1-— — 7 d
(t) exp(/o l( z)
tﬁ’(z
—1_ i
exp<0 5 )

e [0,

This equation is about as simple as the equilibrium of the linear war of attrition

(where ¢;(z) = —x). So, it is pretty popular. You can try other assumptions in the
general equation to to get other expressions. For example, the equilibrium where

players only pay a fraction of ¢; when they win is also relatively simple.
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