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Abstract

Agents with similar skill may differ in their ability to self-promote. We consider
the problem of a manager who uses an efficient, anonymous contest to extract
effort from equally productive workers who differ in their ability to win the
contest. If the prize is fixed, it is often possible to discriminate against the
stronger player despite anonymity. However, full surplus extraction is not typ-
ically possible. If the designer can endogenize the prize, full surplus extraction
is possible in an all-pay auction as long as a single-crossing condition is met.
In the optimal contest, the worker with the better self-promotion technology is
endogenously offered a lower expected prize. Because the contest is anonymous,
this discrimination is covert.
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1 Introduction

Many economic settings are described by competition between individuals for a prize.
However, these competitions can be asymmetric in the sense that contestants may
differ in their inherent ability to win the contest. This heterogeneity can reduce
competitiveness and decrease effort. When this happens, a contest designer may want
to level the playing field by discriminating in favor of the weaker player. This approach
has been explored by the large empirical and theoretical literature on discrimination
as a way of benefiting weaker players (Holzer and Neumark, 2000; Roemer, 1998) and
maximizing aggregate effort (Brown, 2011; Franke et al., 2013).

These advantages in contests are not necessarily advantages in productive output.
In employment contexts, workers sometimes win promotions by appearing busier or
appearing more productive than competitors rather than actually being more pro-
ductive. For example, workers can stay in the office later than their bosses, fill up
their calendars, or do a better job of internally selling their work output. Because
this self-promotion is internal, it does not further the goals of the organization.

We consider one such problem where a manager designs a contest for a promotion
or bonuses to encourage equally productive workers to exert effort. While the workers
are equally capable of producing valuable work output, the workers differ in their
ability to self-promote. That is, the output that the manager actually observes may
be “enhanced” by self-promotion.

If the manager knows who is self-promoting and can discriminate directly against
workers, this self-promotion can be corrected for. This is the solution considered
in much of the contest design literature. Typically, discrimination is overt – that
is, the designer makes the contest depend on the identities of the participants. For
example, Mealem and Nitzan, 2014 studies optimal reward schemes in a complete
information all-pay auction (APA) where the stronger player is offered a smaller
reward for winning than her opponent. These methods require both that the designer
knows the identities of the contestants and is allowed to design a contest that treats
players asymmetrically. In practice, it may not be viable – or even desirable – to
construct a contest that overtly favors one player. This could be due to concerns
about fairness. For example, the manager may be unable to offer larger bonuses
to apparently less productive employees. It could also be due to information. For
example, the designer may not be able to identify the weaker player.
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We instead consider discrimination that is covert in the sense that neither the
value nor the allocation of the prize depends on the identities of the players. Indeed,
the only asymmetries are the players’ inherent differences in their self-promotion
abilities. Such schemes have the advantage of apparent fairness, since players are
treated symmetrically. In order to achieve discrimination in this setting, the key is
to make sure stronger players are still disadvantaged in equilibrium.

We show that a manager who must award a promotion and is not allowed to adjust
the value of the prize may be able to achieve full surplus extraction, but often is unable
to do so. To achieve this extraction, the designer must grant a larger expected prize
to the weaker player. No commonly used contest has this property. We introduce a
contest that does, an all-pay auction combined with a difference-form contest, and
show that it can achieve full surplus extraction in some settings. This requires a
single-crossing type condition in the self-promotion capacities, but the property is
not sufficient.

When the manager is allowed to adjust the value of the prize endogenously (e.g., a
bonus) the single-crossing property is sufficient to ensure full surplus extraction. The
optimal contest is an all-pay auction with spillovers and no bid caps as in (Betto and
Thomas, 2021). This contest allows the manager to completely level the playing field
– effectively making the restriction of anonymity useless. This game has a unique
Nash equilibrium. So, the outcome is uniquely implemented.

This paper contributes to the literature on optimal design of contests (eg. Che
and Gale, 2003; Mealem and Nitzan, 2014) by allowing the designer to introduce
spillovers to contests. We especially relate to Jönsson and Schmutzler, 2013, which
studies the design of all-pay auctions with endogenous prizes. Unlike their paper, we
study contests with spillovers where the prize depends on the opponents’ effort rather
than the players’ own. This difference is crucial and drives our results.

We also contribute to the literature on optimal covert discrimination in Tullock
contests (eg. Epstein et al., 2013; Nti, 1999), which studies how the contest success
function of the Tullock contest can be adjusted (symmetrically) to maximize revenue.
In contrast, we allow for the designer to pick any symmetric contest success function,
and adjust the prize (symmetrically) to maximize revenue. This freedom allows for
a more literal sort of discrimination where the weaker player receives a larger prize
in equilibrium – something that does not happen in any commonly studied contest
framework.
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2 Model

One manager designs a contest to provide an effort incentive to two workers. Each
worker, i, selects costly output yi ∈ R+ and transforms it using their strictly increasing
self-promotion technology, fi : R+ → R+.

The manager cannot directly observe yi. The manager instead observes the trans-
formed output, which we denote the worker’s score: si ≡ fi(yi). The manager wants
to maximize the sum of real outputs (not scores). That is, the manager’s objective
is to maximize E[y1 + y2]. Note that observing the sum of actual outputs does not
allow the manager to back out the individual outputs and does not allow for direct
discrimination.

The manager has complete anonymous information. That is, the manager knows
f1 and f2, but does not know which corresponds to each employee. Alternatively, the
manager does know which worker is which, but is unable to discriminate directly.

The contest that the manager designs consists of two components: (1) a prize,
vi(si; s−i), which may depend on the winner and loser’s score and (2) a contest success
function, pi(si; s−i), which defines each player’s probability of winning the prize given
the profile of scores.

The payoff of a worker who plays si against an opponent who plays s−i receives
the expected prize less the output provided to the manager:

Ui(si, yi; s−i) ≡ pi(si; s−i)vi(si; s−i)− yi.

2.1 Assumptions

We assume that f1, f2 are strictly increasing, continuously differentiable, and ranked.
So, f1(x) > f2(x) for all x > 0 without loss. We make the following restrictions on
the manager:

Assumption 1 (Budget constraint). There is a limited amount of expected prize
(indexed to 1):

EV ≡ E[p(s1; s2)v(s1; s2) + p(s2; s1)v(s2; s1)] ≤ 1
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Assumption 2 (Efficiency). There is one prize and it is always allocated. That is,

p1(x; y) + p2(y;x) = 1 and vi(x; y) > 0 ∀i, x, y.

Assumption 3 (Anonymity). The probability of winning the prize and the prize itself
do not depend on the identity of the payer. That is,

p1(x; y) = p2(x; y) and v1(x; y) = v2(x; y) ∀x, y.

As a result of anonymity, we can remove all subscripts from p and v. The as-
sumption of efficiency is very important. Without it, the optimal contest would be
an auction with a reserve bid set at f1(1) such that only Worker 1 participated.

3 Results

Because the self-promotion technology, fi, is strictly increasing, it is invertible. We
can use this to rewrite each worker’s payoff entirely in terms of the score:

Ui(si; s−i) ≡ p(si; s−i)v(si; s−i)− f−1
i (si).

Whatever the equilibrium of the contest, the following condition must hold for all
x in the support of Player i’s strategy.

ūi ≡ E[p(x; s−i)v(x; s−i)]− f−1
i (si) (1)

where ūi is the payoff of Player i and s−i is a (possibly deterministic) random variable
representing the equilibrium strategy of Player i’s opponent. This implies that the
principal’s expected revenue can be rewritten as follows:

E[y1 + y2] = E[f−1
1 (s1) + f−1

2 (s2)]

= E[p(s1; s2)v(s1; s2) + p(s2; s1)v(s2; s1)]− ū1 − ū2

= EV − ū1 − ū2.

So, if the expected value of the contest is held constant, the principal’s problem
is equivalent to minimizing the payoffs of the workers. When we say that a contest
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extracts the full surplus, we mean that EV = 1 and ū1 + ū2 = 0.

3.1 Direct discrimination

If the manager could discriminate directly, it is easy to extract the full surplus in an
asymmetric all-pay auction with v(si; s−i) ≡ 1 and

pi(si; s−i) ≡


0 if f−1

i (si) < f−1
−i (s−i)

1
2 if f−1

i (si) = f−1
−i (s−i)

1 if f−1
i (si) > f−1

−i (s−i).

This all-pay auction is known to extract the full surplus of all participants because it
is equivalent to a symmetric all-pay auction over real output, y.

3.2 Fixed prizes

We enforce Assumptions 1-3 and also require that v(si; s−i) ≡ 1. In this case, the
optimal contest does not extract the full surplus. It is an all-pay auction with bid
caps.

Lemma 1. Full surplus extraction is possible only if Worker 2 wins the prize with
probability greater than one half in equilibrium.

Proof. By anonymity, efficiency, and the fixed prize assumption, either player can
obtain an expected prize of 0.5 by copying the opponent’s strategy. As a result,

1
2 − E[f−1

1 (s2)] ≤ E[U1(s1; s2)]

≤ E[U1(s1; s2) + U2(s2; s1)]− ū2

= EV − E[y1 + y2]− ū2

Because EV is 1, E[y1 + y2] ≤ 1
2 + E[f−1

1 (s2)] − ū2. If the full surplus is extracted,
E[f−1

1 (s2)] = 1
2 .

Suppose, by way of contradiction, Worker 2 wins with probability less than or
equal to one half. Then, E[f−1

1 (s2)] < E[f−1
2 (s2)] ≤ 1

2 , which is a contradiction.

This exemplifies what we mean by covert discrimination. We have covert dis-
crimination when the weaker player, Worker 2, is receives a larger expected prize

5



in equilibrium. No typical contest has this property. If the costs are scaled, covert
discrimination is not possible.

Theorem 1. If f2(x) = αf1(x) for some α ∈ (0, 1), the optimal contest success
function is an all-pay auction with a bid cap at s̄ ≡ f2 (1/2). That is,

p(si; s−i) ≡


0 if si < s−i ≤ s̄ or si > s̄

1
2 if si = s−i

1 if si < s−i ≤ s̄ or s−i > s̄.

The output from this optimal contest is y∗1 + y∗2 = 1+α
2 .

Proof. Combine the inequality from Lemma 1, E[y1 + y2] ≤ 1
2 +E[f−1

1 (s2)]− ū2, with
our assumption. This gives,

E[y1 + y2] ≤ 1
2 + αE[f−1

2 (s2)]− ū2.

We want to show that E[f−1
2 (s2)] ≤ 0.5 (i.e., that covert discrimination is impossible).

To see this, note that because the players can switch to each other’s strategies, Worker
2 must prefer his strategy to copying Worker 1:

1
2 − E[f−1

2 (s1)] ≤ E[p(s2; s1)]− E[f−1
2 (s2)],

and Worker 1 must prefer his strategy to copying Worker 2:

1
2 − αE[f−1

2 (s2)] ≤ E[p(s1; s2)]− αE[f−1
2 (s1)].

Combining the two and substituting E[p(s1; s2)] + E[p(s2; s1)] = 1 yields,

α−1
(
E[p(s2; s1)]− 1

2

)
≤ E[p(s2; s1)]− 1

2 ,

which implies E[f−1
2 (s2)] ≤ 0.5. Therefore, E[y1 + y2] ≤ 1+α

2 , a bound attained by
the proposed contest.

Note that the nonexistence of covert discrimination in this setting is used in the
proof. In general, covert discrimination is often possible.
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Example 1 (Full surplus extraction). Suppose that two workers have self-promotion
functions that we define by inverse as

f−1
1 (x) ≡


2x
3 if x ≤ 0.5

1
3 + (x− 0.5) if x > 0.5

f−1
2 (x) ≡


x if x ≤ 0.5
1
2 + 2

3(x− 0.5) if x ∈ (0.5, 0.75]
2
3 + (x− 0.75) if x > 0.75

Consider the following contest success function,

p(si; s−i) ≡



0 if si < s−i and si < 0.5
1
2 −

2
3(s−i − si) if 0.5 ≤ si < s−i and 0.5 < s−i

1
2 if si = s−i

1
2 + 2

3(si − s−i) if 0.5 ≤ s−i < si and 0.5 < si

1 if s−i < si and s−i < 0.5,

where the second and fourth lines are capped at zero and one. This contest is an
all-pay auction until both players play at least 0.5 and a difference-form contest
thereafter. There is an equilibrium where Worker 1 plays s∗1 = 1

2 and Worker 2 plays
s∗2 = 3

4 . The real outputs are y∗1 = f−1
1 (0.5) = 1

3 and y∗1 = f−1
2 (0.75) = 2

3 . There is
full surplus extraction in this game.

To see why there is no strategic deviations, consider the endogenous contest success
functions for each player. Worker 1 faces the following contest success function in
equilibrium:

p(s1; 0.75) ≡



0 if s1 < 0.5
1
2 −

2
3(0.75− s1) if s1 ∈ [0.5, 0.75)

1
2 if s1 = 0.75
1
2 + 2

3(s1 − 0.75) if s1 > 0.75.

The slope is not large enough for Worker 1 to want to increase past s∗1 = 1
2 . Clearly,

no decrease in the score will increase the payoff either. Worker 2 faces the following

7



contest success function in equilibrium:

p(s2; 0.5) ≡


0 if s2 < 0.5
1
2 if s2 = 0.5
1
2 + 2

3(s2 − 0.5) if s2 > 0.5.

Worker 2 is indifferent between all scores in [0.5, 0.75]. The contest success function
is exactly equal to his costs on this interval. 4

Lemma 1 showed that covert discrimination is required to extract the full surplus
because the self-promotion abilities are ranked. In Example 1, the manager uses the
fact that the marginal self-promotion abilities need not be ranked to extract the full
surplus.

The combined all-pay auction with difference form contest used in Example 1 is a
very useful tool for covert discrimination. However, it is not a solution for all cases. In
fact, unranked marginal costs are not sufficient to ensure that full surplus extraction
is possible. This fact is made clear by the following proposition.

Proposition 1. If f1(x) ≥ 2f2(x) for all x ∈ [0, 1], full surplus extraction is not
possible.

Proof. By way of contradiction, suppose the full surplus is extracted, then both play-
ers have a payoff of zero. If Worker 2 has a payoff of zero,

E[p(s1; s2)]− E[f−1
2 (s2)] = 0.

If Worker 1 imitates this strategy, he receives

0 ≥ 0.5− E[f−1
1 (s2)] ≥ 0.5− 0.5E[f−1

2 (s2)].

This implies the following contradiction

0 ≥ 1− E[f−1
2 (s2)] > E[p(s1; s2)]− E[f−1

2 (s2)] = 0.

Here we use the fact that Worker 2 cannot win with probability 1. This is because this
would imply that Worker 1 plays zero, which Worker 2 would imitate for a positive
payoff.
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Proposition 1 demonstrates that the absolute scale of the functions is important.
Full surplus extraction is not possible with a fixed prize in all cases where marginal
costs are not ranked. However, if the manager is able to adjust the prize endogenously,
full surplus extraction is always possible.

3.3 Endogenous prize

When the designer can construct a prize with spillovers, full surplus extraction is
possible.

Theorem 2 (Full surplus extraction). If the marginal inverse self-promotion tech-
nologies, are not ranked such that (f−1

2 )′(t) < (f−1
1 )′(t) for some t such that (f−1

1 )′(t)+
(f−1

2 )′(t) < EV , there exists an optimal contest of the form v(s; y) = v̌?(y) with the
auction contest success function,

p(si; s−i) =


1 if si > s−i

0.5 if si = s−i

0 if si < s−i,

such that surplus is fully extracted.

Theorem 2 shows that it is possible for the principal to achieve the first-best
outcome using an all-pay auction with spillovers. The prize does not even have to
depend on the player’s own score. The optimal prize is easily constructed. The
function is a continuous approximation of a step function that is larger than v̄ on
the region where (f−1

2 )′(t) > (f−1
1 )′(t), but is smaller in the region where (f−1

2 )′(t) <
(f−1

1 )′(t).

Example 2. Worker 1 self-promotes with inverse function f−1
1 (s) = s2, whereas

Player 2 self-promotes according to f−1
2 (s) = s.

For convenience, we are going to use a prize budget of 0.9 instead of 1. That is,
EV ≤ 0.9. Note that on the interval (0, 0.9], f−1

2 (s) > f−1
1 (s) but marginal costs are

not similarly ranked. Because of this, there exists a prize such that neither player has
a mass point at zero.

The fixed prize that maximizes effort, given the designer’s constraint, is v = 0.9.
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Value and Cost

0 0.5 0.9
s−i

v
(s
−
i)

0 0.5 0.9
si

c i
(s
i)

c1
c2

Fixed Prize Equilibrium

0 0.5 0.9
si

g i
(s
i)

g1
g2

0 0.5 0.9
si

G
i(s

i)
G1
G2

Covert Discrimination Equilibrium

0 0.5 0.8
si

g i
(s
i)

g1
g2

0 0.5 0.8
si

G
i(s

i)

G1
G2

Figure 1: Plots of equilibrium densities (left), distributions (right), and primitives
(top) from Example 2. In both cases, Player 2 places more density on scores in
(0.5, 0.9] than Player 1. Because the prize is sharply less valuable when your opponent
plays in this interval, in equilibrium, the prize is not as valuable for Player 1. This
drives the increase in the contests’ competitiveness.
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In this case, the players’ equilibrium strategies’ cumulative distribution functions are

G1(s) = 10s
9 G2(s) = 1

10 + 10s2

9 .

The expected output produced by both competitors is 0.9 − (0.9 − (0.9)2) = 0.81.
Now, consider the following prize:

v̌(x) =


4
3 if x ≤ 1

2
11
25 if x > 1

2

where x is the opponent’s output. That is, the value of the prize to one player
depends explicitly on the output produced by their opponent. With this particular
reward choice, EV = 0.9 and total output is 0.9.

This example is visualized in Figure 1, and demonstrates that covert discrimina-
tion can be revenue improving. The key to this example lies in how the stronger
player 1’s marginal costs are above player 2’s for s > 1/2, even if the costs them-
selves aren’t. By carefully crafting the prize values, the designer is able to exploit the
marginal disadvantage of the stronger player to improve the contests’ competitiveness
without having to rely on differential treatment of the participants. 4
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4 Appendix

4.1 Proof of Theorem 2

Define the sets L,H as L ≡ {x ∈ [0, v̄]|c′1(x) > c′2(x)} and H ≡ [0,∞) − L = {x ∈
[0,∞)|c′1(x) ≤ c′2(x)}. We propose the following step contest and show that R = v̄

v̌?(x) =

vl if x ∈ L

vh if x ∈ H

for some vh ≥ vl > 0. That is, we need to show that there exist vh ≥ vl > 0 such that

R ≡
∫ s̄

0
c1(x) dG1(x) +

∫ s̄

0
c2(x) dG2(x) = v̄ (2)

where s̄, G1, G2 are equilibrium objects. When there is no mass point in either player’s
strategy distribution,

gi(x) = c′−i(x)
v̌?(x) =


c′−i(x)
vl

if x ∈ L
c′−i(x)
vh

if x ∈ H.
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There are no mass points if and only if
∫ s̄

0 g1(x) dx =
∫ s̄

0 g2(x) dx = 1. In this case,
this is equivalent to

G−i(s̄) =
∫ s̄

0
g−i(x) dx

=
∫ s̄

0

c′i(x)
v̌?(x) dx

= 1
vl

∫
L∩S

c′i(x) dx+ 1
vh

∫
H∩S

c′i(x) dx

= 1
vl
ci(s̄)−

( 1
vl
− 1
vh

) ∫
H∩S

c′i(x) dx = 1 (3)

for both i.
In this case, equation (2) can be rewritten as

R ≡
∫ s̄

0
c1(x) dG1(x) +

∫ s̄

0
c2(x) dG2(x)

=
∫ s̄

0

1
v̌?(x) (c1(x)c′2(x) + c′1(x)c2(x)) dx

= 1
vl

∫
L∩S

dc1(x)c2(x)
dx

dx+ 1
vh

∫
H∩S

dc1(x)c2(x)
dx

dx

= 1
vl
c1(s̄)c2(s̄)−

( 1
vl
− 1
vh

) ∫
H∩S

dc1(x)c2(x)
dx

dx = v̄. (4)

If we substitute l ≡ 1
vl

and h ≡ 1
vl
− 1

vh
into (3) and (2), we get the following

system of equations

v̄ = lc1(s̄)c2(s̄)− h
∫
H∩S

dc1(x)c2(x)
dx

dx

1 = lc1(s̄)− h
∫
H∩S

c′1(x) dx

1 = lc2(s̄)− h
∫
H∩S

c′2(x) dx

We can isolate l, h from the second and third equation

l =
∫
H∩S c

′
2(x)− c′1(x) dx
D(s̄) >

c2(s̄)− c1(s̄)
D(s̄) = h

where
D(s̄) ≡ c2(s̄)

∫
L∩S

c′1(x) dx− c1(s̄)
∫
L∩S

c′2(x) dx > 0.
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If an s̄ exists, it is obvious that s̄ > k ≡ inf L. Otherwise, none of these equations
are defined. So, the only thing to confirm is that there exists a s̄ > k such that

Q(s̄) ≡
c1(s̄)c2(s̄)

∫
H∩S c

′
2(x)− c′1(x) dx− (c2(s̄)− c1(s̄))

∫
H∩S

dc1(x)c2(x)
dx

dx

c1(s̄)
∫
H∩S c

′
2(x) dx− c2(s̄)

∫
H∩S c

′
1(x) dx = v̄

We know that c′1(k) = c′2(k).

lim
x→k

Q(x) = lim
x→k

c1(x)c2(x)
∫
H∩S(x) c

′
2(y)− c′1(y) dy − (c2(x)− c1(x))

∫
H∩S(x)

dc1(y)c2(y)
dy

dy

c1(x)
∫
H∩S(x) c

′
2(y) dy − c2(x)

∫
H∩S(x) c

′
1(y) dy

By L’Hopital’s rule

=
dc1(k)c2(k)

dk
(c2(k)− c1(k))− (c′2(k)− c′1(k)) c1(k)c2(k)

c′1(k)c2(k)− c1(k)c′2(k)

=
(
c′1(k)c2(k) + c1(k)c′2(k)
c′1(k)c2(k)− c1(k)c′2(k)

)
(c2(k)− c1(k))

= c1(k) + c2(k)

Additionally,

Q(x) =
c1(x)c2(x)

∫
H∩S(x) c

′
2(y)− c′1(y) dy − (c2(x)− c1(x))

∫
H∩S(x)

dc1(y)c2(y)
dy

dy

c1(x)
∫
H∩S(x) c

′
2(y) dy − c2(x)

∫
H∩S(x) c

′
1(y) dy

>
c1(x)c2(x)

∫
H∩S(x) c

′
2(y)− c′1(y) dy − (c2(x)− c1(x)) c1(x)c2(x)

c1(x)
∫
H∩S(x) c

′
2(y) dy − c2(x)

∫
H∩S(x) c

′
1(y) dy

=
c1(x)c2(x)

∫
L∩S(x) c

′
1(y)− c′2(y) dy

c1(x)
∫
H∩S(x) c

′
2(y) dy − c2(x)

∫
H∩S(x) c

′
1(y) dy

>
c1(x)c2(x)

∫
L∩S(x) c

′
1(y)− c′2(y) dy

c1(x)c2(x)− c2(x)
∫
H∩S(x) c

′
1(y) dy

=
c1(x)

∫
L∩S(x) c

′
1(y)− c′2(y) dy∫

L∩S(x) c
′
1(y) dy

= c1(x)
(

1−
∫
L∩S(x) c

′
2(y) dy∫

L∩S(x) c
′
1(y) dy

)

So, lim x→∞Q(x) =∞. By continuity, there exists a s̄ such that Q(s̄) = v̄.
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