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Introduction



What if principal cannot discriminate

Contestants often differ in ability

• Heterogeneity reduces competitiveness and total effort

• Discrimination in favor of weaker player can correct for heterogeneity

• This requires information about player types

What if principal has this information but cannot discriminate
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Known types without discrimination is design with interim types

All-knowing designer under anonymity still has interim type distribution

• Knowledge of interim type distribution is powerful

• Boring full-surplus extracting revelation mechanism:

• Principal asks for types

• Reported types do not match interim distribution =⇒ collective punishment

• Extract all surplus

• Argument assumes unlimited liability

Design with interim types and efficiency (type of limited liability)
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Revenue from two-player contests
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Related literature

“Structural” contest design1

• Ewerhart (2017), Franke, Leininger, et al. (2018), and Nti (2004)

Revenue dominance in anonymous, efficient contests

• Epstein et al. (2013), Fang (2002), and Franke, Kanzow, et al. (2014)

1This is a large literature. See Mealem and Nitzan (2016) for a review.
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Model



Model (1): Setup

• Complete information, two-player2 contest with unit prize

• Each player submits score si ≥ 0 at linear cost ki > 0 s.t. k2 > k1

• Principal chooses contest success functions (CSFs) to max expected revenue

pi(si, s−i) ∈ [0, 1]

• Solution concept is revenue-maximizing Nash equilibrium

Normalize k1 = 1 and k2 = k > 1 and call k heterogeneity

2Extend to n players later
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Model (2): Timing

Timing of game is:

1. Types (k1, k2) are common knowledge3

2. Principal chooses CSFs and announces them to the players

3. Players submit scores (s1, s2) simultaneously

4. Player i receives payoff:

ui(si; s−i) = pi(si, s−i)− kisi

3We restrict principal’s use of information so knowledge of distribution is sufficient
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Model (3): Restrictions

Two restrictions on principal’s CSF:

Definition (Anonymous)
p1(x, y) = p2(x, y) for all x, y ≥ 0.

Definition (Efficient)
p1(x, y) + p2(y, x) = 1 for all x, y ≥ 0.
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Results



Full surplus extraction with anonymity or efficiency alone

Note: full surplus is one which requires s1 = 1 and s2 = 0

If not efficient,

• Principal sets reserve score of 1

If not anonymous,

• Principal allocates to Player 2 unless s1 ≥ 1
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No full surplus extraction with anonymity and efficiency

No anonymous, efficient CSF can extract full surplus

• Both players must have payoff zero and s1 = 1, s2 = 0

• Player 1 has profitable deviation because p(0,0) = 0.5

Yet to demonstrate one cannot get arbitrarily close to full surplus extraction4

4In fact, with n > 2 players and m < n− 1 prizes, principal can get arbitrarily close
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When heterogenity low, optimal is APA with bid caps

If k ≤ 2, optimal anonymous, efficient contest

• Implementable using all-pay auction with bid cap at 12k

p(x, y) =


1 if 12k ≥ x > y or y >

1
2k

1
2 if x = y

0 if 12k ≥ y > x or x >
1
2k

• Both players score 1
2k and split prize

Optimal to extract effort from both players because heterogeneity is low
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When heterogenity high, optimal is difference form

If k ≥ 2, optimal anonymous, efficient contest

• Implementable using difference-form contest

p(x, y) =


1 if x− y > 1

2

1
2 + x− y if x− y ∈

[
− 12 ,

1
2
]

0 if x− y < − 12 .

• Player 1 scores 12 and Player 2 scores zero

Not worth extracting effort from Player 2 because heterogeneity is high
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Two Contests that Maximize Revenue
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More players



Only interesting with one fewer prizes than players

If m < n− 1 prizes:

• Request 1−ϵ
ki effort from players 1 to m for 1− ϵ of prize

• Request mϵkm+1 from Player m+ 1 for mϵ of prize

• At least one player has no prize

• If player imitates another, give both prizes to players with unique scores

Arbitrarily close to full surplus extraction
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Three players and two prizes has all interesting attributes of n players

Optimal anonymous, efficient mechanism obtains revenue

1
2k1 +

1
2k2 if k3k2 ≥ 3

1
2k1 +

3
2k3 if k3k2 ≤ 3 ≤ k3

k1
3
k3 if k3k1 ≤ 3 and

k3
k2 ≥ 2

1
k1 +

3−k3/k1
2k2 if k3k1 ≤ 3 ≤ k2+k3

k1 and k3k2 ≤ 2
6− k2+k3

k1
2k1 if k2+k3k1 ≤ 3 and k3k2 ≤ 2

Similar to the two player case, no prize for Player 3
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Three players and two prizes has all interesting attributes of n players

Optimal anonymous, efficient mechanism obtains revenue
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k2 ≥ 2

1
k1 +

3−k3/k1
2k2 if k3k1 ≤ 3 ≤ k2+k3

k1 and k3k2 ≤ 2
6− k2+k3

k1
2k1 if k2+k3k1 ≤ 3 and k3k2 ≤ 2

Similar to the two player case, split one prize between Player 2 and Player 3
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Three players and two prizes has all interesting attributes of n players

Optimal anonymous, efficient mechanism obtains revenue

1
2k1 +

1
2k2 if k3k2 ≥ 3

1
2k1 +

3
2k3 if k3k2 ≤ 3 ≤ k3

k1
3
k3 if k3k1 ≤ 3 and

k3
k2 ≥ 2

1
k1 +

3−k3/k1
2k2 if k3k1 ≤ 3 ≤ k2+k3

k1 and k3k2 ≤ 2
6− k2+k3

k1
2k1 if k2+k3k1 ≤ 3 and k3k2 ≤ 2

Give half of Player 1 and Player 2’s prize to Player 3
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Three players and two prizes has all interesting attributes of n players

Optimal anonymous, efficient mechanism obtains revenue

1
2k1 +

1
2k2 if k3k2 ≥ 3

1
2k1 +

3
2k3 if k3k2 ≤ 3 ≤ k3

k1
3
k3 if k3k1 ≤ 3 and

k3
k2 ≥ 2

1
k1 +

3−k3/k1
2k2 if k3k1 ≤ 3 ≤ k2+k3

k1 and k3k2 ≤ 2
6− k2+k3

k1
2k1 if k2+k3k1 ≤ 3 and k3k2 ≤ 2

IR binding for Player 2, transfer half Player 2’s prize and some of Player 3’s
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Three players and two prizes has all interesting attributes of n players

Optimal anonymous, efficient mechanism obtains revenue

1
2k1 +

1
2k2 if k3k2 ≥ 3

1
2k1 +

3
2k3 if k3k2 ≤ 3 ≤ k3

k1
3
k3 if k3k1 ≤ 3 and

k3
k2 ≥ 2

1
k1 +

3−k3/k1
2k2 if k3k1 ≤ 3 ≤ k2+k3

k1 and k3k2 ≤ 2
6− k2+k3

k1
2k1 if k2+k3k1 ≤ 3 and k3k2 ≤ 2

IR binding for everyone, transfer some of players 1 and 2’s prize to Player 3
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Revenue from three-player contests (k1 = 5/6 and k2 = 1)
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Scores from three-player contests (k1 = 5/6 and k2 = 1)
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Thank You!
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