Regulation of Wages and Hours

Matthew W. Thomas

March 31, 2024

Federal Trade Commission

The views expressed in this article are those of the author and do not necessarily reflect those of the Federal Trade Commission or any individual Commissioner

Introduction

Overtime and hours caps

Such regulations are common and heterogeneous: Why? What is optimal?

Optimal robust regulation resembles existing policies

Optimal policy is minimum wage, overtime, and cap on hours

Regulating wages and hours

To study, need model of hours bargaining and regulation

- Pareto efficient joint bargaining of hours and wages
- Redistributive regulation that restricts bargaining space

Overtime, hours caps, and minimum wage are examples of such regulations

Flexible-hours model

Canonical flexible-hours model of monopsony

Worker chooses hours at posted wage: hours not contractible

Canonical flexible-hours model of monopsony

Minimum wage can increase labor to TS maximizing level

Canonical flexible-hours model of monopsony

Labor hours decrease in minimum wage after TS maximizing point

Effect of minimum wage on labor and total surplus

Increasing/maximizing hours and increasing/maximizing total surplus are equivalent

Ultimatum bargaining model

Ultimatum framework

- One firm contracts with one worker (extend later)
- Contract (ℓ, τ) : worker works ℓ hours for total compensation τ
- Firm makes "take it or leave it" offer under complete information
- Firm profits

$$\pi(\ell,\tau) = f(\ell) - \tau,$$

worker payoff

$$u(\ell, \tau) = \tau - c(\ell).$$

¹In paper, allow for more general bargaining.

Ultimatum framework

- Firm makes "take it or leave it" offer1 under complete information
- Firm profits

$$\pi(\ell,\tau) = f(\ell) - \tau,$$

worker payoff

$$u(\ell, \tau) = \tau - c(\ell)$$
.

Assume:

$$f, -c, -c'(x)x$$
 strictly concave, differentiable, $f'(0) > c'(0) > 0 > \lim_{x \to \infty} f'(x) - c'(x)$

¹In paper, allow for more general bargaining.

Wage and overwork

Definition (Wage) Worker's wage is compensation per hour: $\mathbf{w} \equiv \tau/\ell$

Definition (Overwork)

Worker is overworked if she would prefer to work fewer hours for the same wage:

wage < marginal cost

Regulation/delegation

Definition (Regulation)

A convex function of hours,

$$\phi: \mathbb{R}_+ \to [0, \infty]$$
, s.t. contracts in $\{(\ell, \tau): \tau < \phi(\ell)\}$ are forbidden.

Definition (Minimum wage)

The slope of a linear policy. That is, \bar{w} is the minimum wage if $\phi(x) \equiv \bar{w}x$.

Objective of regulation

Regulator's objective:

Maximize total surplus and break ties in favor of worker²

²More aggressive redistribution considered later

Results

Overwork

Ultimatum game without regulation:

- Firm extracts all surplus
- · Total surplus is maximized
- Wage is worker's average cost
- Worker is overworked (average cost < marginal cost)

Minimum wage maximizes worker utility

Minimum wage is first best

If ϕ results in z hours, minimum wage $\phi'(z)$ results in z hours with more compensation

Effect of minimum wage on hours and total surplus in ultimatum model

Increasing/maximizing hours and increasing/maximizing total surplus **not** equivalent

Models are "indistinguishable"

Remark

Flexible-hours model generates same labor curve as ultimatum model with same production and different cost

- Impossible to distinguish between models based on labor reaction to policy
- No result of ultimatum model hours empirically inconsistent with flexible-hours

Using labor response curve to regulate

flexible-hours: ■ maximizes TS

ultimatum model: ● maximizes TS ⇒ ■ is local TS minimum

TS decreasing in minimum wage in at least one model

Remark

If total surplus increasing in minimum wage at \boldsymbol{w} in one model, it's decreasing in other

Wrong model \implies opposite effect of policy on total surplus!

Extensions

- Robust regulation
- More general bargaining
- Heterogeneous workers
- Competition among firms

Thank You!

Extensions

Why are many real policies nonlinear?

"Best" policy for worker is minimum wage, but **information is limited**Consider case where regulator

- knows nothing about f, c, but knows hours and compensation
- knows some specific reduced hours that the worker prefers

Historical motivation

Similar to introduction of overtime pay in the US (1938 Fair Labor Standards Act)

- Regulator knows workers want 40 hour workweek
- No existing regulation

Introducing the regulator

Regulator has no prior over f, c, but

- knows state of market pre-regulation: (ℓ^m, τ^m)
- knows reduced hours, $\hat{\ell} < \ell^m$, preferred by worker at same wage: $(\hat{\ell}, w^m \hat{\ell})$

Worker gets this known preferred contract or better

Offer at least as much utility to worker as known preferred contract

Satisficing

Let $\mathcal{L}[\phi]$ denote the firm's labor choice under regulation ϕ . Policy ϕ is satisficing if for all f, c such that $f'(\ell^m) = c'(\ell^m)$ and $c(\ell^m) = \tau^m$,

$$\max\{\phi(\mathcal{L}[\phi]) - c(\mathcal{L}[\phi]), 0\} \ge w^m \hat{\ell} - c(\hat{\ell})$$

Take satisficing contract that maximizes total surplus in every possible state

TS maximizing

Policy ϕ is TS maximizing if for all f, c such that $f'(\ell^m) = c'(\ell^m)$ and $c(\ell^m) = \tau^m$ and all satisficing ψ ,

$$f(\mathcal{L}[\phi]) - c(\mathcal{L}[\phi]) \ge f(\mathcal{L}[\psi]) - c(\mathcal{L}[\psi])$$

This is the least restrictive one

Theorem

A policy, ϕ , is satisficing if and only if $\phi(\hat{\ell}) = w^m \hat{\ell}$ and

$$\phi(x) \ge \phi_*(x) \equiv \begin{cases} w^m x & \text{if } x \le \hat{\ell} \\ w^m \hat{\ell} + w^m \frac{\ell^m}{\ell^m - \hat{\ell}} (x - \hat{\ell}) & \text{if } \hat{\ell} < x \le \ell^m \\ \infty & \text{if } x > \ell^m \end{cases}$$

Least restrictive satisficing regulation, ϕ_* , is TS maximizing:

• Overtime pay with wage multiplier of $\frac{\ell^m}{\ell^m - \hat{\ell}}$ and hours cap at ℓ^m

- Left of $\hat{\ell}$ is never chosen by firm
- Right of $\hat{\ell}$ is upper bound on cost of additional hours: $c(x) c(\hat{\ell})$

- Function maximizes disutility of additional hours: $c(x) c(\hat{\ell})$
- Bound comes from convexity of c and IR of •

More general bargaining

More Example

Results

More general bargaining including Nash and proportional bargaining:

- Minimum wage without loss of optimality
- Efficient, redistributive regulation exists iff overwork in absence of regulation
- Maximizing hours locally minimizes TS iff overwork in absence of regulation

Softer objective needed for heterogeneous workers

Consider a model where

- Multiple workers have different cost functions, c_i
- Firm contracts with workers individually
- Regulator must apply same ϕ to all workers

Efficiency is too strict with heterogeneous workers!

Need more weight on worker utility

Placing more weight on workers

Regulator maximizes weighted sum of surpluses

Regulator objective: Maximize $\alpha u(\ell, w\ell) + (1 - \alpha)\pi(\ell, w\ell)$ for $\alpha \in (0.5, 1]$ using ϕ .

Until now, we focused on $\alpha \rightarrow 0.5$

flexible-hours: ■ maximizes TS, ■ maximizes WS (can be above or below ●)
ultimatum model: ● maximizes TS, ● maximizes WS

Heterogeneous workers and aggregation

Flexible-hours model convenient for aggregation

- Each hour treated like individual worker
- Hours are fungible across workers

Sometimes convenient to aggregate in ultimatum model too!

Complete information: heterogeneous workers

Ultimatum model result

If regulator maximizes worker surplus of heterogeneous workers

- Optimal regulation is minimum wage
- Representative worker exists
- Optimal policy for representative worker is overall optimal policy
- Representative worker has average costs of all workers affected by policy

Complete information: representative worker intuition

Firm's problem: $\max_{\ell,\tau} f(\ell) - \tau$ s.t. $\tau \geq \phi(\ell)$ and $\tau \geq c_i(\ell)$

Regulation benefits worker $\implies \tau > c_i(\ell) \implies$ contract does not depend on i

Every worker affected by regulation receives same contract!

Robust setting: heterogeneous workers

Want TS maximizing satisficing contract for both Worker 1 and Worker 2

Do procedure for each worker and take maximum

Policy may have multiple levels of overtime – e.g., California and Mexico

Asymmetric Bertrand competition with potential entrant

Two firms: one incumbent and one potential entrant

- Entrant has lower marginal productivity than incumbent
- · Incumbent moves first with contract offer
- Entrant hires worker if possible to do so profitably

In equilibrium,

- Entrant offers full surplus to worker
- Incumbent matches offer of entrant's maximum surplus

Asymmetric Bertrand competition with potential entrant

Minimum wage weakens competitive pressure by regulating entrant

Asymmetric Bertrand competition with potential entrant

If entrant's wage is lower, minimum wage can reduce incumbent's wage

Asymmetric Bertrand competition: policy implications

Less regulation for new/small firms

- Regulate incumbent without affecting potential entrant
- Not common for pay regulation
- Common for compliance regulations:
 - Americans with Disabilities Act: 15+ employees
 - ACA Shared Responsibility Payment: 50+ employees
 - Equal Employment Opportunity reporting: 100+ employees

Thank You!

References

Peters, Hans and Peter Wakker (1991). "Independence of Irrelevant Alternatives and Revealed Group Preferences". In: Econometrica 59, pp. 1787–1801.

Appendix

Bargaining according to

$$(\ell^*, au^*) \equiv rg \max_{\ell, au} M(f(\ell) - au, au - c(\ell)) ext{ s.t. } au \geq \phi(\ell)$$

 $M:\mathbb{R}^2_+ o \mathbb{R}$ continuous, weakly monotone, and strictly quasiconcave

Alternatively, representation from PO, IIA, and continuity³ (Peters and Wakker, 1991)

³Choice function $C: \Sigma \to \mathbb{R}^2_+$ is continuous if for every sequence, $S_k \to S \implies C(S_k) \to C(S)$

Consider egalitarian bargaining

• Assume –c "more concave" than f in that:

$$f(\ell^*) - f'(\ell^*)\ell^* < c'(\ell^*)\ell^* - c(\ell^*)$$

- This implies (and is necessary for) overwork
- The market is described by

$$\max_{\ell,\tau} \min\{f(\ell) - \tau, \tau - c(\ell)\} \text{ s.t. } \tau \geq \phi(\ell)$$

Other bargaining frameworks produce similar labor response

Egalitarian bargaining payoffs

Small minimum wages reduce both utility and profit

By convexity, for all $x \in (\hat{\ell}, \ell^m)$

$$c(x) - c(\hat{\ell}) < \frac{x - \hat{\ell}}{\ell^m - \hat{\ell}} \left[c(\ell^m) - c(\hat{\ell}) \right]$$

The worker accepted $(\ell^m, \tau^m) \implies \tau^m \ge c(\ell^m)$

$$\frac{x-\hat{\ell}}{\ell^m-\hat{\ell}}\left[c(\ell^m)-c(\hat{\ell})\right] \leq \frac{x-\hat{\ell}}{\ell^m-\hat{\ell}}\tau^m$$

Which we rearrange to yield

$$\frac{x-\hat{\ell}}{\ell^m-\hat{\ell}}\tau^m=w^m\frac{\ell^m}{\ell^m-\hat{\ell}}(x-\hat{\ell})$$

Existing policies are below least satisficing

Satisficing policy with kink at 40 hours is above this curve (there are 168 hours in a week)

Suppose that the overtime policy in Japan, which grants time and a quarter after 40 hours of work each week and a cap after 55 hours, is relative maxmin. In this case, $\hat{\ell}=40$, $\bar{\ell}=55<\Psi(w^m)$ and

$$1.25 \geq \frac{\Psi(w^m)}{\Psi(w^m) - \hat{\ell}}$$

because the slope of this policy must be at least as large as the LRRM. Last inequality implies

$$\Psi(w^m) \ge 200.$$

We can reject that this policy is satisficing because there are only 168 hours in a week. Therefore, there are possible types of workers that prefer a strict 40 hour cap to this policy.

Suppose that the overtime policy in the US, which grants time and a half after 40 hours of work, is relative maxmin (ignoring the lack of labor cap). In this case, $\hat{\ell}=40$ and

$$\frac{\Psi(w^m)}{\Psi(w^m) - \hat{\ell}} \le 1.5$$

which implies

$$\Psi(w^m) \ge 120.$$

The lack of an hour cap at such a number of hours is irrelevant. This leaves a little under 7 hours for sleep each day. Some workers do work 120 hours on occasion. It is, however, extremely rare.